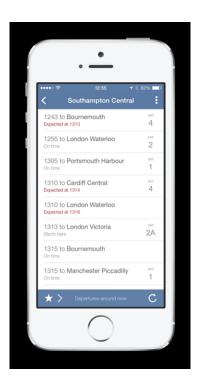

Southampton

ITS and Public Transport: Rail

Professor John Preston Chair in Rail Transport



What can ITS do for railways?

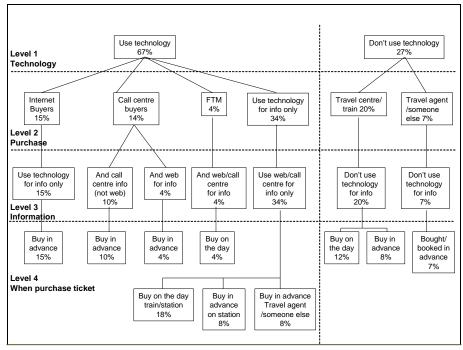
Southampton Southampton

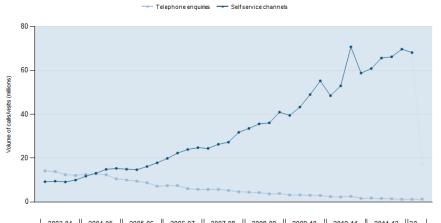
- Automatic Train Location
- Automatic Train Control/Driver Assistance Systems
- Smart Ticketing and Intelligent Pricing
- Security and Surveillance
- Multimodal, real-time passenger information & navigation systems
- On train and station displays
- Through Journey Apps

TSAG's 30 year challenges

Cost: Halve the cost of rail operations
Capacity: Double network capacity
Carbon: Halve the industry's carbon footprint
Customer: Increase customer satisfaction to 99%

Competitiveness:


GB rail as part of the fabric of economic success

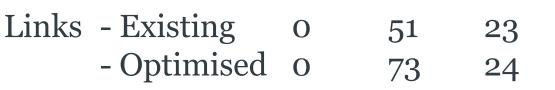

Case Study (I) Rail Passenger Needs

- Limited (short-run) effects in terms of passenger and revenue growth
- Greater potential for cost reductions (e.g. retail distribution)
- Initially mitigated by fragmented market and technology proliferation
- But internet technology beginning to dominate.

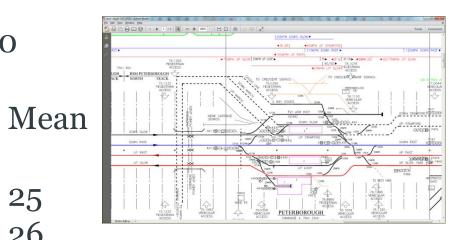
Southampton Southampton

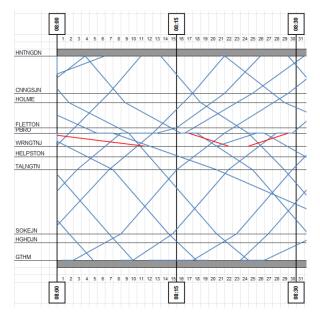
L 2003-04 JL 2004-05 JL 2005-06 JL 2006-07 JL 2007-08 JL 2008-09 JL 2009-10 JL 2010-11 JL 2011-12 J20... J

Case Study (II): Capacity Management Systems

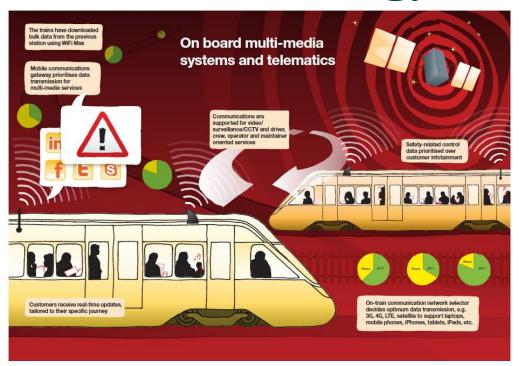

Min

Max




CUI Measures (%) 07:00 to 09:00 190 Nodes and associated links

Nodes - Existing	O	64	25
- Optimised	0	81	26



Smarter scheduling could eliminate train waiting times and increase train movements by 26%.

Academic Response to Rail Southampton Technical Strategy 2012

	Technical theme							
Common Design Concept	Command Control Comms	Energy	Infrastructure	Rolling Stock	Information	Customer Experience		
Whole-system reliability	В	В	110	88	00	◙		
Resilience	88	80	80	8	⊠	8		
Security	8		BID	DB	0	BID		
Automation	88	В	0	08	00	8		
Simplicity			0	8	0	80		
Flexibility	⊠ 8	В	8	8	80	BID		
Sustainability	8	88	80	8		8		

Key Issue:

Understanding the Human: Machine Interface.

Beware the ironies of automation.

design concept has high relevance to technical theme

design concept has moderate relevance